Model Protein Standards

Silantes offers high quality stable isotope labeled ubiquitin for monitoring the performance of NMR-spectrometers and for testing new pulse-sequences.

Stable Isotope-Labeled Ubiquitin at Silantes

Human Ubiquitin

Isotopic labelings 2H, 13C, 15N, 2H15N, 13C15N, 2H13C15N
Sequence MQIFVKTLTG KTITLEVEPS DTIENVKAKI QDKEGIPPDQ QRLIFAGKQL EDGRTLSDYN IQKESTLHLV LRLRGG
Molecular weight
(of the unlabeled molecule)
8.500 Da

High Quality Standards

We guarantee an isotopic enrichment of > 98 atom %. The isotopic enrichment of the NMR standards is verified by NMR analysis. Figure 1 shows a 2D-NMR spectrum with two superimposed ubiquitin samples:

Triple-labeled ubiquitin (2H13C15N) in blue and double-labeled ubiquitin (13C15N) in red.

2D NMR spectra for stable isotope labeled ubiquitin from Silantes.
Figure 1: 2D NMR spectra for 2H13C15N- (blue) and 13C15N- (red) labeled ubiquitin. Data of this figure were kindly provided by Dr. Richter in Prof. Dr. Harald Schwalbe Group, Goethe University Frankfurt.

High resolution NMR-spectra of all stable-isotopic labeling patterns can be found in the reference-section (blow).

For the chemical purity, we guarantee > 95 %. The chemical purity of ubiquitin is verified by electrophoresis for ubiquitin (see figure 2).

The chemical purity of stable isotope labeled Ubiquitin at Silantes is tested by SDS-PAGE.
Figure 2: SDS-PAGE of Ubiquitin

Ready-to-use

The Silantes Ubiquitin NMR standards are available in both solid powder form and as concentrated solution (550 µL) prepackaged in a ready-to-use 5 mm NMR tube.

References

NMR-Spectra of the ubiquitin from Silantes:

Use cases of the Silantes ubiquitin in scientific publications:

  • Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson’s disease and dementia with Lewy bodies. (n.d.). http://springermedizin.de . https://www.springermedizin.de/association-between-csf-alpha-synuclein-seeding-activity-and-gen/25667868
  • Yuan, X., Simpson, P., Mckeown, C., Kondo, H., Uchiyama, K., Wallis, R., Dreveny, I., Keetch, C., Zhang, X., Robinson, C., Freemont, P., & Matthews, S. (2004). Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97. The EMBO Journal, 23(7), 1463–1473. https://doi.org/10.1038/sj.emboj.7600152
  • Haller, J. D., Bodor, A., & Luy, B. (2022). Pure shift amide detection in conventional and TROSY-type experiments of 13C,15N-labeled proteins. Journal of Biomolecular NMR, 76(5–6), 213–221. https://doi.org/10.1007/s10858-022-00406-z
  • Toft, A., Sjödin, S., Simonsen, A. H., Ejlerskov, P., Roos, P., Musaeus, C. S., Henriksen, E. E., Nielsen, T. T., Brinkmalm, A., Blennow, K., Zetterberg, H., & Nielsen, J. E. (2023). Endo‐lysosomal protein concentrations in CSF from patients with frontotemporal dementia caused by CHMP2B mutation. Alzheimer S & Dementia Diagnosis Assessment & Disease Monitoring, 15(1). https://doi.org/10.1002/dad2.12402
  • Sjödin, S., Hansson, O., Öhrfelt, A., Brinkmalm, G., Zetterberg, H., Brinkmalm, A., & Blennow, K. (2017). Mass spectrometric analysis of cerebrospinal fluid ubiquitin in Alzheimer’s disease and parkinsonian disorders. PROTEOMICS – CLINICAL APPLICATIONS, 11(11–12). https://doi.org/10.1002/prca.201700100
  • Lowe, A. J., Sjödin, S., Rodrigues, F. B., Byrne, L. M., Blennow, K., Tortelli, R., Zetterberg, H., & Wild, E. J. (2020). Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington’s disease. PLoS ONE, 15(8), e0233820. https://doi.org/10.1371/journal.pone.0233820

Products: