Silantes offers all components that are necessary for a SILAC experiment. Each component is in a prepared sterile solution and ready for use. The components are available as individual products or in a kit. Read More
Each kit consists of:
2 ั 500 mL Silantes SILAC DMEM or RPMI media free of the amino acids lysine and arginine
2 ั 50 mL Silantes dialyzed FBS
Unlabeled L-lysine and L-arginine
SILAC amino acids L-lysine and L-arginine
A guide to choosing the right SILAC kit
The following graph shows the simplified SILAC scheme.
Depending on which SILAC amino acids are to be used in steps (6) and (7), the appropriate kit can be selected from graphic 2.
Use cases of the SILAC amino acids from Silantes in scientific publications:
Hao, B., Li, X., Jia, X., Wang, Y., Zhai, L., Li, D., Liu, J., Zhang, D., Chen, Y., Xu, Y., Lee, S., Xu, G., Chen, X., Dang, Y., Liu, B., & Tan, M. (2020). The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta Pharmacologica Sinica, 41(9), 1246โ1254. https://doi.org/10.1038/s41401-020-0367-9
Lรถรner, C., Warnken, U., Pscherer, A., & Schnรถlzer, M. (2011). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123โ125. https://doi.org/10.1016/j.ab.2011.01.011
Sigismondo, G., Arseni, L., Palacio-Escat, N., Hofmann, T. G., Seiffert, M., & Krijgsveld, J. (2023c). Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Nucleic Acids Research, 51(2), 687โ711. https://doi.org/10.1093/nar/gkac1264
Pateetin, P., Hutvagner, G., Bajan, S., Padula, M. P., McGowan, E. M., & Boonyaratanakornkit, V. (2021). Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00884-0
Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A., Leal, L., Wahi, J. E., Setien-Baranda, F., Szczesna, K., Moutinho, C., Martinez-Cardus, A., Heyn, H., Sandoval, J., Puertas, S., Vidal, A., Sanjuan, X., Martinez-Balibrea, E., Viรฑals, F., Perales, J. C., . . . Esteller, M. (2014). A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4608
Ong, S., Kratchmarova, I., & Mann, M. (2002). Properties of 13C-Substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research, 2(2), 173โ181. https://doi.org/10.1021/pr0255708
Lรถรner, C., Warnken, U., Pscherer, A., & Schnรถlzer, M. (2011b). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123โ125. https://doi.org/10.1016/j.ab.2011.01.011
Malet, J. K., Impens, F., Carvalho, F., Hamon, M. A., Cossart, P., & Ribet, D. (2018b). Rapid remodeling of the host epithelial cell proteome by the listeriolysin O (LLO) pore-forming toxin. Molecular & Cellular Proteomics, 17(8), 1627โ1636. https://doi.org/10.1074/mcp.ra118.000767
Rogers, L. C., Kremer, J. C., Brashears, C. B., Lin, Z., Hu, Z., Bastos, A. C., Baker, A., Fettig, N., Zhou, D., Shoghi, K. I., Dehner, C. A., Chrisinger, J. S., Bomalaski, J. S., Garcia, B. A., Oyama, T., White, E. P., & Van Tine, B. A. (2023). Discovery and targeting of a noncanonical mechanism of sarcoma resistance to ADI-PEG20 mediated by the microenvironment. Clinical Cancer Research, 29(16), 3189โ3202. https://doi.org/10.1158/1078-0432.ccr-22-2642
Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y., & Mann, M. (2011). Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 6(2), 147โ157. https://doi.org/10.1038/nprot.2010.192
Hao, B., Sun, M., Zhang, M., Zhao, X., Zhao, L., Li, B., Zhai, L., Liu, P., Hu, H., Xu, J., & Tan, M. (2020). Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. Journal of Proteomics, 213, 103614. https://doi.org/10.1016/j.jprot.2019.103614
We use cookies on our website to for technical and analytical purposes. Click โAcceptโ to allow all cookies, or click "Settings" to manage your consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-advertisement
1 year
Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
CookieLawInfoConsent
1 year
Records the default button state of the corresponding category & the status of CCPA. It works only in coordination with the primary cookie.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
_ga
2 years
The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_ga_HKFZ3WLVRJ
2 years
This cookie is installed by Google Analytics.
_gat_gtag_UA_124513377_2
1 minute
Set by Google to distinguish users.
_gid
1 day
Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
CONSENT
2 years
YouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.