Modified NTPs and Phosphoramidites

RNA modifications can be found in a wide range of organisms and in almost all RNA species, including tRNA, mRNA and small non-coding RNAs. These modifications are of great interest in scientific research on cellular functions related to RNA recognition, stability, and delivery. In addition, RNA based gene regulation was shown to be impacted by RNA modifications in health and disease. The determination of the stoichiometry of an RNA modification is critical since it can vary depending on the cellular stimulus like nutrition availability, stress, signal transduction, etc.

In our web shop, you’ll find a selection of the most frequently requested products. Please contact our customer service to see the complete product list or for special requests.

Stable Isotope-Labeled modified NTPs and Amidites for Synthesis of Oligonucleotides

As the study of modified RNA and DNA molecules plays an increasingly important role, we are steadily developing our portfolio of stable isotope labeled modified NTPs and phosphoramidites.

Stable isotope-labeled modified NTPs

In the field of NTPs, all pseudouridines and N1-methylpseudouridines can be produced levels with almost any combination of labeled atoms (figure below). Note: The sugar moiety can only be labeled uniformly; the nitrogen atoms on the nucleobase can be either both labeled or both unlabeled.

Labeling possibilities on pseudouridine and N1-methylpseudouridine compounds

Stable isotope-labeled modified phosphoramidites

For the phosphoramidites, we already have an extensive and growing portfolio of isotopically labeled methylated amidites as well as various isotopic labels for pseudouridines.

Please contact our customer service to see the complete product list of isotopically labeled modified NTPs and amidites.

The Modification You Desire with the Labeling you Require

In addition to the product examples shown in this webshop, Silantes can also synthesise custom-made molecules.

Customised modifications

Silantes can provide all bases (adenine, guanine, cytosine, uracil) either as nucleoside, mono-, di-, or triphosphate and with all common modifications (e.g., methyl, pseudouridine, etc.).

Customized labeling patterns

In addition to the labeling patterns indicated in this webshop, Silantes can also realize a custom labeling pattern that is site-specific in base, ribose, or modification.

To request a custom synthesis, please contact our customer service.

References

Use cases of the Silantes NTPs in scientific publications:

  • Mieczkowski, M., Steinmetzger, C., Bessi, I., Lenz, A., Schmiedel, A., Holzapfel, M., Lambert, C., Pena, V., & Hรถbartner, C. (2021). Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23932-0
  • Musheev, M. U., Schomacher, L., Basu, A., Han, D., Krebs, L., Scholz, C., & Niehrs, C. (2022). Mammalian N1-adenosine PARylation is a reversible DNA modification. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33731-w
  • Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03516-1
  • Li, M., Wang, Y., Wei, X., Cai, W., Wu, J., Zhu, M., Wang, Y., Liu, Y., Xiong, J., Qu, Q., Chen, Y., Tian, X., Yao, L., Xie, R., Li, X., Chen, S., Huang, X., Zhang, C., Xie, C., . . . Lin, S. (2024). AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Research. https://doi.org/10.1038/s41422-024-00985-6
  • Cromsigt, J., Schleucher, J., Gustafsson, T., Kihlberg, J., & Wijmenga, S. (2002). Preparation of partially 2H/13C-labelled RNA for NMR studies. Stereo-specific deuteration of the H5โ€™โ€™ in nucleotides. Nucleic Acids Research, 30(7), 1639โ€“1645. https://doi.org/10.1093/nar/30.7.1639
  • Rangadurai, A., Szymanski, E. S., Kimsey, I., Shi, H., & Al-Hashimi, H. M. (2020). Probing conformational transitions towards mutagenic Watsonโ€“Crick-like GยทT mismatches using off-resonance sugar carbon R1ฯ relaxation dispersion. Journal of Biomolecular NMR, 74(8โ€“9), 457โ€“471. https://doi.org/10.1007/s10858-020-00337-7
  • Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wรถhnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences, 102(5), 1372โ€“1377. https://doi.org/10.1073/pnas.0406347102
  • Ohira, T., Minowa, K., Sugiyama, K., Yamashita, S., Sakaguchi, Y., Miyauchi, K., Noguchi, R., Kaneko, A., Orita, I., Fukui, T., Tomita, K., & Suzuki, T. (2022). Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 605(7909), 372โ€“379. https://doi.org/10.1038/s41586-022-04677-2
  • Vรถgele, J., Duchardt-Ferner, E., Bains, J. K., Knezic, B., Wacker, A., Sich, C., Weigand, J. E., ล poner, J., Schwalbe, H., Krepl, M., & Wรถhnert, J. (2024). Structure of an internal loop motif with three consecutive Uโ€ขU mismatches from stemโ€“loop 1 in the 3โ€ฒ-UTR of the SARS-CoV-2 genomic RNA. Nucleic Acids Research, 52(11), 6687โ€“6706. https://doi.org/10.1093/nar/gkae349
  • Broft, P., Rosenkranz, R. R., Schleiff, E., Hengesbach, M., & Schwalbe, H. (2022). Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 19(1), 266โ€“278. https://doi.org/10.1080/15476286.2021.2024034

Use cases of the Silantes phosphoramidites in scientific publications:

  • Becette, O., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
  • ล tih, V., Amenitsch, H., Plavec, J., & Podbevลกek, P. (2023). Spatial arrangement of functional domains in OxyS stress response sRNA. RNA, 29(10), 1520โ€“1534. https://doi.org/10.1261/rna.079618.123

Use cases of the Silantes oligonucleotide synthesis service in scientific publications:

  • Belfetmi, A., Zargarian, L., Tisnรฉ, C., Sleiman, D., Morellet, N., Lescop, E., Maskri, O., Renรฉ, B., Mรฉly, Y., Fosse, P., & Mauffret, O. (2016). Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA, 22(4), 506โ€“517. https://doi.org/10.1261/rna.054445.115
  • Borggrรคfe, J., Victor, J., Rosenbach, H., Viegas, A., Gertzen, C. G. W., Wuebben, C., โ€ฆ Etzkorn, M. (2021). Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature, 601(7891), 144โ€“149. https://doi.org/10.1038/s41586-021-04225-4
  • Chernatynskaya, A. V., Deleeuw, L., Trent, J. O., Brown, T., & Lane, A. N. (2009). Structural analysis of the DNA target site and its interaction with Mbp1. Organic & Biomolecular Chemistry, 7(23), 4981. https://doi.org/10.1039/b912309a
  • Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulmรฉ, J., Bryce, D. L., & Boisbouvier, J. (2008). Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proceedings of the National Academy of Sciences, 105(27), 9210โ€“9215. https://doi.org/10.1073/pnas.0712121105

Use cases of the Silantes 14-mer RNA Standard in scientific publications:

  • Duchardt, E., & Schwalbe, H. (2005). Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. Journal of Biomolecular NMR, 32(4), 295โ€“308. https://doi.org/10.1007/s10858-005-0659-x
  • Hartlmรผller, C., Gรผnther, J. C., Wolter, A. C., Wรถhnert, J., Sattler, M., & Madl, T. (2017). RNA structure refinement using NMR solvent accessibility data. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05821-z
  • Nozinovic, S., Fรผrtig, B., Jonker, H. R. A., Richter, C., & Schwalbe, H. (2009). High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Research, 38(2), 683โ€“694. https://doi.org/10.1093/nar/gkp956
  • Richter, C., Kovacs, H., Buck, J., Wacker, A., Fรผrtig, B., Bermel, W., & Schwalbe, H. (2010). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Journal of Biomolecular NMR, 47(4), 259โ€“269. https://doi.org/10.1007/s10858-010-9429-5
  • Ferner, J., Villa, A., Duchardt, E., Widjajakusuma, E., Wรถhnert, J., Stock, G., & Schwalbe, H. (2008). NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops. Nucleic Acids Research, 36(6), 1928โ€“1940. https://doi.org/10.1093/nar/gkm1183

Relevant blog articles:

Relevant webinars:


Products: