Modified NTPs and Phosphoramidites
In our web shop, you’ll find a selection of the most frequently requested products. Please contact our customer service to see the complete product list or for special requests.
Stable Isotope-Labeled modified NTPs and Amidites for Synthesis of Oligonucleotides
As the study of modified RNA and DNA molecules plays an increasingly important role, we are steadily developing our portfolio of stable isotope labeled modified NTPs and phosphoramidites.
Stable isotope-labeled modified NTPs
In the field of NTPs, all pseudouridines and N1-methylpseudouridines can be produced levels with almost any combination of labeled atoms (figure below). Note: The sugar moiety can only be labeled uniformly; the nitrogen atoms on the nucleobase can be either both labeled or both unlabeled.

Stable isotope-labeled modified phosphoramidites
For the phosphoramidites, we already have an extensive and growing portfolio of isotopically labeled methylated amidites as well as various isotopic labels for pseudouridines.
Please contact our customer service to see the complete product list of isotopically labeled modified NTPs and amidites.
The Modification You Desire with the Labeling you Require
In addition to the product examples shown in this webshop, Silantes can also synthesise custom-made molecules.
Customised modifications
Silantes can provide all bases (adenine, guanine, cytosine, uracil) either as nucleoside, mono-, di-, or triphosphate and with all common modifications (e.g., methyl, pseudouridine, etc.).
Customized labeling patterns
In addition to the labeling patterns indicated in this webshop, Silantes can also realize a custom labeling pattern that is site-specific in base, ribose, or modification.
To request a custom synthesis, please contact our customer service.
References
Use cases of the Silantes NTPs in scientific publications:
- Mieczkowski, M., Steinmetzger, C., Bessi, I., Lenz, A., Schmiedel, A., Holzapfel, M., Lambert, C., Pena, V., & Hรถbartner, C. (2021). Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23932-0
- Musheev, M. U., Schomacher, L., Basu, A., Han, D., Krebs, L., Scholz, C., & Niehrs, C. (2022). Mammalian N1-adenosine PARylation is a reversible DNA modification. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33731-w
- Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03516-1
- Li, M., Wang, Y., Wei, X., Cai, W., Wu, J., Zhu, M., Wang, Y., Liu, Y., Xiong, J., Qu, Q., Chen, Y., Tian, X., Yao, L., Xie, R., Li, X., Chen, S., Huang, X., Zhang, C., Xie, C., . . . Lin, S. (2024). AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Research. https://doi.org/10.1038/s41422-024-00985-6
- Cromsigt, J., Schleucher, J., Gustafsson, T., Kihlberg, J., & Wijmenga, S. (2002). Preparation of partially 2H/13C-labelled RNA for NMR studies. Stereo-specific deuteration of the H5โโ in nucleotides. Nucleic Acids Research, 30(7), 1639โ1645. https://doi.org/10.1093/nar/30.7.1639
- Rangadurai, A., Szymanski, E. S., Kimsey, I., Shi, H., & Al-Hashimi, H. M. (2020). Probing conformational transitions towards mutagenic WatsonโCrick-like GยทT mismatches using off-resonance sugar carbon R1ฯ relaxation dispersion. Journal of Biomolecular NMR, 74(8โ9), 457โ471. https://doi.org/10.1007/s10858-020-00337-7
- Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wรถhnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences, 102(5), 1372โ1377. https://doi.org/10.1073/pnas.0406347102
- Ohira, T., Minowa, K., Sugiyama, K., Yamashita, S., Sakaguchi, Y., Miyauchi, K., Noguchi, R., Kaneko, A., Orita, I., Fukui, T., Tomita, K., & Suzuki, T. (2022). Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 605(7909), 372โ379. https://doi.org/10.1038/s41586-022-04677-2
- Vรถgele, J., Duchardt-Ferner, E., Bains, J. K., Knezic, B., Wacker, A., Sich, C., Weigand, J. E., ล poner, J., Schwalbe, H., Krepl, M., & Wรถhnert, J. (2024). Structure of an internal loop motif with three consecutive UโขU mismatches from stemโloop 1 in the 3โฒ-UTR of the SARS-CoV-2 genomic RNA. Nucleic Acids Research, 52(11), 6687โ6706. https://doi.org/10.1093/nar/gkae349
- Broft, P., Rosenkranz, R. R., Schleiff, E., Hengesbach, M., & Schwalbe, H. (2022). Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 19(1), 266โ278. https://doi.org/10.1080/15476286.2021.2024034
Use cases of the Silantes phosphoramidites in scientific publications:
- Becette, O., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
- ล tih, V., Amenitsch, H., Plavec, J., & Podbevลกek, P. (2023). Spatial arrangement of functional domains in OxyS stress response sRNA. RNA, 29(10), 1520โ1534. https://doi.org/10.1261/rna.079618.123
Use cases of the Silantes oligonucleotide synthesis service in scientific publications:
- Belfetmi, A., Zargarian, L., Tisnรฉ, C., Sleiman, D., Morellet, N., Lescop, E., Maskri, O., Renรฉ, B., Mรฉly, Y., Fosse, P., & Mauffret, O. (2016). Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA, 22(4), 506โ517. https://doi.org/10.1261/rna.054445.115
- Borggrรคfe, J., Victor, J., Rosenbach, H., Viegas, A., Gertzen, C. G. W., Wuebben, C., โฆ Etzkorn, M. (2021). Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature, 601(7891), 144โ149. https://doi.org/10.1038/s41586-021-04225-4
- Chernatynskaya, A. V., Deleeuw, L., Trent, J. O., Brown, T., & Lane, A. N. (2009). Structural analysis of the DNA target site and its interaction with Mbp1. Organic & Biomolecular Chemistry, 7(23), 4981. https://doi.org/10.1039/b912309a
- Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulmรฉ, J., Bryce, D. L., & Boisbouvier, J. (2008). Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proceedings of the National Academy of Sciences, 105(27), 9210โ9215. https://doi.org/10.1073/pnas.0712121105
Use cases of the Silantes 14-mer RNA Standard in scientific publications:
- Duchardt, E., & Schwalbe, H. (2005). Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. Journal of Biomolecular NMR, 32(4), 295โ308. https://doi.org/10.1007/s10858-005-0659-x
- Hartlmรผller, C., Gรผnther, J. C., Wolter, A. C., Wรถhnert, J., Sattler, M., & Madl, T. (2017). RNA structure refinement using NMR solvent accessibility data. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05821-z
- Nozinovic, S., Fรผrtig, B., Jonker, H. R. A., Richter, C., & Schwalbe, H. (2009). High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Research, 38(2), 683โ694. https://doi.org/10.1093/nar/gkp956
- Richter, C., Kovacs, H., Buck, J., Wacker, A., Fรผrtig, B., Bermel, W., & Schwalbe, H. (2010). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Journal of Biomolecular NMR, 47(4), 259โ269. https://doi.org/10.1007/s10858-010-9429-5
- Ferner, J., Villa, A., Duchardt, E., Widjajakusuma, E., Wรถhnert, J., Stock, G., & Schwalbe, H. (2008). NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops. Nucleic Acids Research, 36(6), 1928โ1940. https://doi.org/10.1093/nar/gkm1183
Relevant blog articles:
- What Are Stable-Isotope Labeled Nucleic Acids?
- Synthesizing Stable Isotope-Labeled Nucleic Acids
- The Advantages of Using Stable Isotope-Labeled Nucleic Acids
- Applications of Stable Isotope-Labeled Molecules: Exploring the Power of Isotopic Tracers
- Custom RNA & DNA Synthesis Services : Tailored Solutions for Your Nucleic Acid Needs
Relevant webinars:
Products:
-
2’O-Methyl-Adenosine Phosphoramidite
Synonyms: 2'OMe A Amidite
From: 960 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
2’O-Methyl-Cytidine Phosphoramidite
Synonyms: 2'OMe C Amidite
From: 740 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
2’O-Methyl-Uridine Phosphoramidite
Synonyms: 2'OMe U Amidite
From: 740 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
5-19F Fluorocytidine 5′-triphosphate
Synonym: Fluoro rCTP Li2-salt
1.120 € plus VAT, plus delivery Add to cart
Quantity: 25mg -
Fluoroadenosine 5′-triphosphate
Synonym: Fluoro rATP Li2-salt
From: 1.120 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
Fluoroadenosine Phosphoramidite
Synonyms: 5'-O-DMT-2'-O-TBDMS-2-Fluoradenosine-3'-CE phosphoramidite, DMT-2'O-TBDMS-2-FA Amidite
From: 1.120 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities.