Model RNA Standards

Stable Isotope-Labeled r14-mer RNA Standard

Silantes offers high quality stable isotope-labeled ribo oligonucleotides for monitoring the performance of NMR-spectrometers and for testing new pulse-sequences.

The Silantes 14-mer oligo-ribonucleotide NMR standard is folded into a very stable hairpin. The structure of a very similar sequence was solved by NMR as described by Varani et al. (Varani, G. et al., Biochemistry, Vol. 30, No. 13, 1991, pp 3280 – 89).

Original sequence (Varani, G. et al.): 5′ – pppGGA CUU CGG UCC-3′

Silantes sequence: 5′ – pppGGC ACU UCG GUG CC – 3′

The original sequence was completed by an additional GC base pair.

Isotope Enrichment > 98 %, Chemical Purity > 95 %

The isotope enrichment of the NMR standards is verified by NMR analysis. The chemical purity of the NMR standards is verified by ion-exchange chromatography for RNA standards.

Ion exchange elution profile of a 14mer RNA fragment (5′ – pppGGC ACU UCG GUG CC – 3′)

Ready-to-use

Our NMR standards are available in both solid powder form and as concentrated solution (550 ยตL) prepackaged in a ready-to-use 5 mm NMR tube.

References

Use cases of the Silantes NTPs in scientific publications:

  • Mieczkowski, M., Steinmetzger, C., Bessi, I., Lenz, A., Schmiedel, A., Holzapfel, M., Lambert, C., Pena, V., & Hรถbartner, C. (2021). Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23932-0
  • Musheev, M. U., Schomacher, L., Basu, A., Han, D., Krebs, L., Scholz, C., & Niehrs, C. (2022). Mammalian N1-adenosine PARylation is a reversible DNA modification. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33731-w
  • Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03516-1
  • Li, M., Wang, Y., Wei, X., Cai, W., Wu, J., Zhu, M., Wang, Y., Liu, Y., Xiong, J., Qu, Q., Chen, Y., Tian, X., Yao, L., Xie, R., Li, X., Chen, S., Huang, X., Zhang, C., Xie, C., . . . Lin, S. (2024). AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Research. https://doi.org/10.1038/s41422-024-00985-6
  • Cromsigt, J., Schleucher, J., Gustafsson, T., Kihlberg, J., & Wijmenga, S. (2002). Preparation of partially 2H/13C-labelled RNA for NMR studies. Stereo-specific deuteration of the H5โ€™โ€™ in nucleotides. Nucleic Acids Research, 30(7), 1639โ€“1645. https://doi.org/10.1093/nar/30.7.1639
  • Rangadurai, A., Szymanski, E. S., Kimsey, I., Shi, H., & Al-Hashimi, H. M. (2020). Probing conformational transitions towards mutagenic Watsonโ€“Crick-like GยทT mismatches using off-resonance sugar carbon R1ฯ relaxation dispersion. Journal of Biomolecular NMR, 74(8โ€“9), 457โ€“471. https://doi.org/10.1007/s10858-020-00337-7
  • Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wรถhnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences, 102(5), 1372โ€“1377. https://doi.org/10.1073/pnas.0406347102
  • Ohira, T., Minowa, K., Sugiyama, K., Yamashita, S., Sakaguchi, Y., Miyauchi, K., Noguchi, R., Kaneko, A., Orita, I., Fukui, T., Tomita, K., & Suzuki, T. (2022). Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 605(7909), 372โ€“379. https://doi.org/10.1038/s41586-022-04677-2
  • Vรถgele, J., Duchardt-Ferner, E., Bains, J. K., Knezic, B., Wacker, A., Sich, C., Weigand, J. E., ล poner, J., Schwalbe, H., Krepl, M., & Wรถhnert, J. (2024). Structure of an internal loop motif with three consecutive Uโ€ขU mismatches from stemโ€“loop 1 in the 3โ€ฒ-UTR of the SARS-CoV-2 genomic RNA. Nucleic Acids Research, 52(11), 6687โ€“6706. https://doi.org/10.1093/nar/gkae349
  • Broft, P., Rosenkranz, R. R., Schleiff, E., Hengesbach, M., & Schwalbe, H. (2022). Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 19(1), 266โ€“278. https://doi.org/10.1080/15476286.2021.2024034

Use cases of the Silantes phosphoramidites in scientific publications:

  • Becette, O., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
  • ล tih, V., Amenitsch, H., Plavec, J., & Podbevลกek, P. (2023). Spatial arrangement of functional domains in OxyS stress response sRNA. RNA, 29(10), 1520โ€“1534. https://doi.org/10.1261/rna.079618.123

Use cases of the Silantes oligonucleotide synthesis service in scientific publications:

  • Belfetmi, A., Zargarian, L., Tisnรฉ, C., Sleiman, D., Morellet, N., Lescop, E., Maskri, O., Renรฉ, B., Mรฉly, Y., Fosse, P., & Mauffret, O. (2016). Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA, 22(4), 506โ€“517. https://doi.org/10.1261/rna.054445.115
  • Borggrรคfe, J., Victor, J., Rosenbach, H., Viegas, A., Gertzen, C. G. W., Wuebben, C., โ€ฆ Etzkorn, M. (2021). Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature, 601(7891), 144โ€“149. https://doi.org/10.1038/s41586-021-04225-4
  • Chernatynskaya, A. V., Deleeuw, L., Trent, J. O., Brown, T., & Lane, A. N. (2009). Structural analysis of the DNA target site and its interaction with Mbp1. Organic & Biomolecular Chemistry, 7(23), 4981. https://doi.org/10.1039/b912309a
  • Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulmรฉ, J., Bryce, D. L., & Boisbouvier, J. (2008). Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proceedings of the National Academy of Sciences, 105(27), 9210โ€“9215. https://doi.org/10.1073/pnas.0712121105

Use cases of the Silantes 14-mer RNA Standard in scientific publications:

  • Duchardt, E., & Schwalbe, H. (2005). Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. Journal of Biomolecular NMR, 32(4), 295โ€“308. https://doi.org/10.1007/s10858-005-0659-x
  • Hartlmรผller, C., Gรผnther, J. C., Wolter, A. C., Wรถhnert, J., Sattler, M., & Madl, T. (2017). RNA structure refinement using NMR solvent accessibility data. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05821-z
  • Nozinovic, S., Fรผrtig, B., Jonker, H. R. A., Richter, C., & Schwalbe, H. (2009). High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Research, 38(2), 683โ€“694. https://doi.org/10.1093/nar/gkp956
  • Richter, C., Kovacs, H., Buck, J., Wacker, A., Fรผrtig, B., Bermel, W., & Schwalbe, H. (2010). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Journal of Biomolecular NMR, 47(4), 259โ€“269. https://doi.org/10.1007/s10858-010-9429-5
  • Ferner, J., Villa, A., Duchardt, E., Widjajakusuma, E., Wรถhnert, J., Stock, G., & Schwalbe, H. (2008). NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops. Nucleic Acids Research, 36(6), 1928โ€“1940. https://doi.org/10.1093/nar/gkm1183

Relevant blog articles:

Relevant webinars:


Products: