rPhosphoramidites and dPhosphoramidites
Available in many Uniform and Site-Specific Labeling Patterns
The phosphoramidites are either uniformly, or site-specifically labeled with 2H, 13C and/or 15N at individual positions within the nucleobase or ribose. The individual labeling patterns can be seen in the product list.
Selected products in this field (complete product range at bottom of page):
Uniformly stable isotope labeled phosphoramidites
Our uniformly stable isotope-labeled phosphoramidites are synthesised using a combination of biotechnological and chemical synthesis steps. In the first step, we obtain nucleosides from 2H, 13C and/or 15N-labeled bacterial biomass. In a second step, these nucleosides are chemically protected to obtain the phosphoramidites.

In vivo enrichment technology of biomass with stable isotopes results in:
- efficient incorporation of the stable isotopes and thus cost-effectively labeled amidites.
- high and homogeneous isotope labeling (> 98 atom %) of the nucleotides by using a closed system.
Site-specific labeled phosphoramidites
We also offer site-specific labeled phosphoramidites. The site-specific labeling patterns are chosen to create independent spin systems either intramolecularly within the nucleotide, or intramolecularly to other molecules, providing high quality NMR information.
High quality at reasonable prices
The isotope enrichment of the amidites is >98 % and the chemical purity >95 %. This is confirmed by mass spectrometry analysis and 31P-NMR. The figure below shows that phosphonate (at 150ppm), a well-known contaminant in the synthesis of deoxy-phosphoramidites, is absent.

References
Use cases of the Silantes NTPs in scientific publications:
- Mieczkowski, M., Steinmetzger, C., Bessi, I., Lenz, A., Schmiedel, A., Holzapfel, M., Lambert, C., Pena, V., & Hรถbartner, C. (2021). Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23932-0
- Musheev, M. U., Schomacher, L., Basu, A., Han, D., Krebs, L., Scholz, C., & Niehrs, C. (2022). Mammalian N1-adenosine PARylation is a reversible DNA modification. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33731-w
- Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03516-1
- Li, M., Wang, Y., Wei, X., Cai, W., Wu, J., Zhu, M., Wang, Y., Liu, Y., Xiong, J., Qu, Q., Chen, Y., Tian, X., Yao, L., Xie, R., Li, X., Chen, S., Huang, X., Zhang, C., Xie, C., . . . Lin, S. (2024). AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Research. https://doi.org/10.1038/s41422-024-00985-6
- Cromsigt, J., Schleucher, J., Gustafsson, T., Kihlberg, J., & Wijmenga, S. (2002). Preparation of partially 2H/13C-labelled RNA for NMR studies. Stereo-specific deuteration of the H5โโ in nucleotides. Nucleic Acids Research, 30(7), 1639โ1645. https://doi.org/10.1093/nar/30.7.1639
- Rangadurai, A., Szymanski, E. S., Kimsey, I., Shi, H., & Al-Hashimi, H. M. (2020). Probing conformational transitions towards mutagenic WatsonโCrick-like GยทT mismatches using off-resonance sugar carbon R1ฯ relaxation dispersion. Journal of Biomolecular NMR, 74(8โ9), 457โ471. https://doi.org/10.1007/s10858-020-00337-7
- Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wรถhnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences, 102(5), 1372โ1377. https://doi.org/10.1073/pnas.0406347102
- Ohira, T., Minowa, K., Sugiyama, K., Yamashita, S., Sakaguchi, Y., Miyauchi, K., Noguchi, R., Kaneko, A., Orita, I., Fukui, T., Tomita, K., & Suzuki, T. (2022). Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 605(7909), 372โ379. https://doi.org/10.1038/s41586-022-04677-2
- Vรถgele, J., Duchardt-Ferner, E., Bains, J. K., Knezic, B., Wacker, A., Sich, C., Weigand, J. E., ล poner, J., Schwalbe, H., Krepl, M., & Wรถhnert, J. (2024). Structure of an internal loop motif with three consecutive UโขU mismatches from stemโloop 1 in the 3โฒ-UTR of the SARS-CoV-2 genomic RNA. Nucleic Acids Research, 52(11), 6687โ6706. https://doi.org/10.1093/nar/gkae349
- Broft, P., Rosenkranz, R. R., Schleiff, E., Hengesbach, M., & Schwalbe, H. (2022). Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 19(1), 266โ278. https://doi.org/10.1080/15476286.2021.2024034
Use cases of the Silantes phosphoramidites in scientific publications:
- Becette, O., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
- ล tih, V., Amenitsch, H., Plavec, J., & Podbevลกek, P. (2023). Spatial arrangement of functional domains in OxyS stress response sRNA. RNA, 29(10), 1520โ1534. https://doi.org/10.1261/rna.079618.123
Use cases of the Silantes oligonucleotide synthesis service in scientific publications:
- Belfetmi, A., Zargarian, L., Tisnรฉ, C., Sleiman, D., Morellet, N., Lescop, E., Maskri, O., Renรฉ, B., Mรฉly, Y., Fosse, P., & Mauffret, O. (2016). Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA, 22(4), 506โ517. https://doi.org/10.1261/rna.054445.115
- Borggrรคfe, J., Victor, J., Rosenbach, H., Viegas, A., Gertzen, C. G. W., Wuebben, C., โฆ Etzkorn, M. (2021). Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature, 601(7891), 144โ149. https://doi.org/10.1038/s41586-021-04225-4
- Chernatynskaya, A. V., Deleeuw, L., Trent, J. O., Brown, T., & Lane, A. N. (2009). Structural analysis of the DNA target site and its interaction with Mbp1. Organic & Biomolecular Chemistry, 7(23), 4981. https://doi.org/10.1039/b912309a
- Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulmรฉ, J., Bryce, D. L., & Boisbouvier, J. (2008). Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proceedings of the National Academy of Sciences, 105(27), 9210โ9215. https://doi.org/10.1073/pnas.0712121105
Use cases of the Silantes 14-mer RNA Standard in scientific publications:
- Duchardt, E., & Schwalbe, H. (2005). Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. Journal of Biomolecular NMR, 32(4), 295โ308. https://doi.org/10.1007/s10858-005-0659-x
- Hartlmรผller, C., Gรผnther, J. C., Wolter, A. C., Wรถhnert, J., Sattler, M., & Madl, T. (2017). RNA structure refinement using NMR solvent accessibility data. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05821-z
- Nozinovic, S., Fรผrtig, B., Jonker, H. R. A., Richter, C., & Schwalbe, H. (2009). High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Research, 38(2), 683โ694. https://doi.org/10.1093/nar/gkp956
- Richter, C., Kovacs, H., Buck, J., Wacker, A., Fรผrtig, B., Bermel, W., & Schwalbe, H. (2010). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Journal of Biomolecular NMR, 47(4), 259โ269. https://doi.org/10.1007/s10858-010-9429-5
- Ferner, J., Villa, A., Duchardt, E., Widjajakusuma, E., Wรถhnert, J., Stock, G., & Schwalbe, H. (2008). NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops. Nucleic Acids Research, 36(6), 1928โ1940. https://doi.org/10.1093/nar/gkm1183
Relevant blog articles:
- What Are Stable-Isotope Labeled Nucleic Acids?
- Synthesizing Stable Isotope-Labeled Nucleic Acids
- The Advantages of Using Stable Isotope-Labeled Nucleic Acids
- Applications of Stable Isotope-Labeled Molecules: Exploring the Power of Isotopic Tracers
- Custom RNA & DNA Synthesis Services : Tailored Solutions for Your Nucleic Acid Needs
Relevant webinars:
Products:
-
Adenosine Phosphoramidite
Synonyms: N6-Ac-5'-O-DMT-2'-O-TBDMS-Adenosine-3'-CE phosphoramidite, DMT-2'O-TBDMS-rA(Ac) Amidite
From: 300 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
Cytidine Phosphoramidite
Synonyms: N4-Ac-5'-O-DMT-2'-O-TBDMS-Cytidine-3'-CE phosphoramidite, DMT-2'O-TBDMS-rC(Ac) Amidite
From: 260 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
DeoxyAdenosine Phosphoramidite
Synonyms: N6-Bz-5'-O-DMT-2'-Deoxyadenosine-3'-CE phosphoramidite, DMT-dA(Bz) Amidite
From: 470 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
DeoxyCytidine Phosphoramidite
Synonyms: N4-Ac-5'-O-DMT-2'-Deoxycytidine-3'-CE phosphoramidite, DMT-dC(Ac) Amidite
From: 500 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
DeoxyGuanosine Phosphoramidite
Synonyms: N2-dmf-5'-O-DMT-2'-Deoxyguanosine-3'-CE phosphoramidite, DMT-dG(dmf) Amidite
From: 360 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
Fluoroadenosine Phosphoramidite
Synonyms: 5'-O-DMT-2'-O-TBDMS-2-Fluoradenosine-3'-CE phosphoramidite, DMT-2'O-TBDMS-2-FA Amidite
From: 1.120 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities.