SILAC Amino Acids
The SILAC amino acids are available in all isotopic combinations of 2H, 3C and 15N. Read More
High Quality of Silantes SILAC Components
We guarantee an isotopic enrichment of > 98 atom % with a chemical purity of > 95 %. The isotopic purity is tested by mass spectrometry, whereas the chemical purity is tested by HPLC.
Good biological acceptance of Silantes SILAC amino acids
Figure 2 shows the growth kinetics of a model mammalian cell line using Silantes SILAC media and different labeling patterns of the SILAC L-lysines.
The experiment shows that the cells grow well on the Silantes SILAC components.
High incorporation of Silantes SILAC amino acids
Figure 3 shows the incorporation of 13C6-lysine in an actin peptide (molecular weight = 586 Da) during the preparation of the “heavy” culture for a SILAC experiment.
A comparison of the 586 Da peak at t = 0 hours stemming from the unlabeled actin peptide and the 589 Da peak at t = 8 days stemming from the corresponding labeled actin peptide indicates that the cell culture is fully labeled after 8 days (4 passages). That the nominal difference of the peaks is 3 Da (and not 6 Da) is due to the fact that the ratio m/z (x-coordinate) is 2 (instead of 1).
References
Relevant documents:
- Stable Isotope labeled Compounds for in-vitro SILAC Experiments
- Stable Isotope labeled Compounds for in-vitro SILAC: cell type-specific labeling using amino acid precursors (CTAP)
Relevant manuals:
Use cases of the SILAC amino acids from Silantes in scientific publications:
- Hao, B., Li, X., Jia, X., Wang, Y., Zhai, L., Li, D., Liu, J., Zhang, D., Chen, Y., Xu, Y., Lee, S., Xu, G., Chen, X., Dang, Y., Liu, B., & Tan, M. (2020). The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta Pharmacologica Sinica, 41(9), 1246–1254. https://doi.org/10.1038/s41401-020-0367-9
- Lößner, C., Warnken, U., Pscherer, A., & Schnölzer, M. (2011). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123–125. https://doi.org/10.1016/j.ab.2011.01.011
- Sigismondo, G., Arseni, L., Palacio-Escat, N., Hofmann, T. G., Seiffert, M., & Krijgsveld, J. (2023c). Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Nucleic Acids Research, 51(2), 687–711. https://doi.org/10.1093/nar/gkac1264
- Pateetin, P., Hutvagner, G., Bajan, S., Padula, M. P., McGowan, E. M., & Boonyaratanakornkit, V. (2021). Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00884-0
- Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A., Leal, L., Wahi, J. E., Setien-Baranda, F., Szczesna, K., Moutinho, C., Martinez-Cardus, A., Heyn, H., Sandoval, J., Puertas, S., Vidal, A., Sanjuan, X., Martinez-Balibrea, E., Viñals, F., Perales, J. C., . . . Esteller, M. (2014). A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4608
- Ong, S., Kratchmarova, I., & Mann, M. (2002). Properties of 13C-Substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research, 2(2), 173–181. https://doi.org/10.1021/pr0255708
- Lößner, C., Warnken, U., Pscherer, A., & Schnölzer, M. (2011b). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123–125. https://doi.org/10.1016/j.ab.2011.01.011
- Malet, J. K., Impens, F., Carvalho, F., Hamon, M. A., Cossart, P., & Ribet, D. (2018b). Rapid remodeling of the host epithelial cell proteome by the listeriolysin O (LLO) pore-forming toxin. Molecular & Cellular Proteomics, 17(8), 1627–1636. https://doi.org/10.1074/mcp.ra118.000767
- Rogers, L. C., Kremer, J. C., Brashears, C. B., Lin, Z., Hu, Z., Bastos, A. C., Baker, A., Fettig, N., Zhou, D., Shoghi, K. I., Dehner, C. A., Chrisinger, J. S., Bomalaski, J. S., Garcia, B. A., Oyama, T., White, E. P., & Van Tine, B. A. (2023). Discovery and targeting of a noncanonical mechanism of sarcoma resistance to ADI-PEG20 mediated by the microenvironment. Clinical Cancer Research, 29(16), 3189–3202. https://doi.org/10.1158/1078-0432.ccr-22-2642
- Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y., & Mann, M. (2011). Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 6(2), 147–157. https://doi.org/10.1038/nprot.2010.192
- Hao, B., Sun, M., Zhang, M., Zhao, X., Zhao, L., Li, B., Zhai, L., Liu, P., Hu, H., Xu, J., & Tan, M. (2020). Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. Journal of Proteomics, 213, 103614. https://doi.org/10.1016/j.jprot.2019.103614
Relevant blog articles:
- Quantitative Proteomics Explained: Techniques, Applications, and Challenges
- Quantitative Proteomics: Comparing the Big Three – iTRAQ, TMT, and SILAC
- Quantitative Proteomics: Label-Free versus Label-Based Methods
- Understanding the Role of Mass Spectrometry in Metabolomics
- Understanding Proteomics: A Comprehensive Guide to the Various Types
Relevant webinars:
Products:
-
4, 4, 5, 5-D4-DL-Lysine
From: 370 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
L-Arginine
From: 40 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
L-Lysine
From: 40 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities.