SILAC Kits
Silantes offers all components that are necessary for a SILAC experiment. Each component is in a prepared sterile solution and ready for use. The components are available as individual products or in a kit. Read More
Each kit consists of:
References
- 2 х 500 mL Silantes SILAC DMEM or RPMI media free of the amino acids lysine and arginine
- 2 х 50 mL Silantes dialyzed FBS
- Unlabeled L-lysine and L-arginine
- SILAC amino acids L-lysine and L-arginine
A guide to choosing the right SILAC kit
The following graph shows the simplified SILAC scheme.
Depending on which SILAC amino acids are to be used in steps (6) and (7), the appropriate kit can be selected from graphic 2.
References
Relevant documents:
- Stable Isotope labeled Compounds for in-vitro SILAC Experiments
- Stable Isotope labeled Compounds for in-vitro SILAC: cell type-specific labeling using amino acid precursors (CTAP)
Relevant manuals:
Use cases of the SILAC amino acids from Silantes in scientific publications:
- Hao, B., Li, X., Jia, X., Wang, Y., Zhai, L., Li, D., Liu, J., Zhang, D., Chen, Y., Xu, Y., Lee, S., Xu, G., Chen, X., Dang, Y., Liu, B., & Tan, M. (2020). The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta Pharmacologica Sinica, 41(9), 1246–1254. https://doi.org/10.1038/s41401-020-0367-9
- Lößner, C., Warnken, U., Pscherer, A., & Schnölzer, M. (2011). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123–125. https://doi.org/10.1016/j.ab.2011.01.011
- Sigismondo, G., Arseni, L., Palacio-Escat, N., Hofmann, T. G., Seiffert, M., & Krijgsveld, J. (2023c). Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair. Nucleic Acids Research, 51(2), 687–711. https://doi.org/10.1093/nar/gkac1264
- Pateetin, P., Hutvagner, G., Bajan, S., Padula, M. P., McGowan, E. M., & Boonyaratanakornkit, V. (2021). Triple SILAC identified progestin-independent and dependent PRA and PRB interacting partners in breast cancer. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00884-0
- Lopez-Serra, P., Marcilla, M., Villanueva, A., Ramos-Fernandez, A., Palau, A., Leal, L., Wahi, J. E., Setien-Baranda, F., Szczesna, K., Moutinho, C., Martinez-Cardus, A., Heyn, H., Sandoval, J., Puertas, S., Vidal, A., Sanjuan, X., Martinez-Balibrea, E., Viñals, F., Perales, J. C., . . . Esteller, M. (2014). A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4608
- Ong, S., Kratchmarova, I., & Mann, M. (2002). Properties of 13C-Substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research, 2(2), 173–181. https://doi.org/10.1021/pr0255708
- Lößner, C., Warnken, U., Pscherer, A., & Schnölzer, M. (2011b). Preventing arginine-to-proline conversion in a cell-line-independent manner during cell cultivation under stable isotope labeling by amino acids in cell culture (SILAC) conditions. Analytical Biochemistry, 412(1), 123–125. https://doi.org/10.1016/j.ab.2011.01.011
- Malet, J. K., Impens, F., Carvalho, F., Hamon, M. A., Cossart, P., & Ribet, D. (2018b). Rapid remodeling of the host epithelial cell proteome by the listeriolysin O (LLO) pore-forming toxin. Molecular & Cellular Proteomics, 17(8), 1627–1636. https://doi.org/10.1074/mcp.ra118.000767
- Rogers, L. C., Kremer, J. C., Brashears, C. B., Lin, Z., Hu, Z., Bastos, A. C., Baker, A., Fettig, N., Zhou, D., Shoghi, K. I., Dehner, C. A., Chrisinger, J. S., Bomalaski, J. S., Garcia, B. A., Oyama, T., White, E. P., & Van Tine, B. A. (2023). Discovery and targeting of a noncanonical mechanism of sarcoma resistance to ADI-PEG20 mediated by the microenvironment. Clinical Cancer Research, 29(16), 3189–3202. https://doi.org/10.1158/1078-0432.ccr-22-2642
- Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y., & Mann, M. (2011). Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nature Protocols, 6(2), 147–157. https://doi.org/10.1038/nprot.2010.192
- Hao, B., Sun, M., Zhang, M., Zhao, X., Zhao, L., Li, B., Zhai, L., Liu, P., Hu, H., Xu, J., & Tan, M. (2020). Global characterization of proteome and lysine methylome features in EZH2 wild-type and mutant lymphoma cell lines. Journal of Proteomics, 213, 103614. https://doi.org/10.1016/j.jprot.2019.103614
Relevant blog articles:
- Quantitative Proteomics Explained: Techniques, Applications, and Challenges
- Quantitative Proteomics: Comparing the Big Three – iTRAQ, TMT, and SILAC
- Quantitative Proteomics: Label-Free versus Label-Based Methods
- Understanding the Role of Mass Spectrometry in Metabolomics
- Understanding Proteomics: A Comprehensive Guide to the Various Types
Relevant webinars:
Products:
-
SILAC DMEM Kits
From: 300 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities. -
SILAC RPMI Kits
From: 290 € plus VAT, plus delivery Select options This product has multiple variants. The options may be chosen on the product page
Available in various isotopic labelings and/or quantities.