N6-Methyl-Adenosine Phosphoramidite

From: 1.290  plus VAT, plus delivery

Synonyms: N6-Me-5′-O-DMT-2′-O-TBDMS-Adenosine-3′-CE phosphoramidite, DMT-2’O-TBDMS-m6A Amidite

Available in various isotopic labelings and/or quantities.

Description

Detailed notation: N6-Methyl-5′-O-(4,4′-dimethoxytrityl)-2′-O-(tert-butyldimethylsilyl)-Adenosine-3′-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite

– This product is in powder form

– Isotopic enrichment > 98 atom %

– Chemical purity > 95 %

Packed in ND 20 crimp neck bottles. Configured for ABI.

References

References

USE CASES OF THE SILANTES NTPs IN SCIENTIFIC PUBLICATIONS:

โ€ข Mieczkowski, M., Steinmetzger, C., Bessi, I., Lenz, A., Schmiedel, A., Holzapfel, M., Lambert, C., Pena, V., & Hรถbartner, C. (2021). Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23932-0
โ€ข Musheev, M. U., Schomacher, L., Basu, A., Han, D., Krebs, L., Scholz, C., & Niehrs, C. (2022). Mammalian N1-adenosine PARylation is a reversible DNA modification. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33731-w
โ€ข Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03516-1
โ€ข Li, M., Wang, Y., Wei, X., Cai, W., Wu, J., Zhu, M., Wang, Y., Liu, Y., Xiong, J., Qu, Q., Chen, Y., Tian, X., Yao, L., Xie, R., Li, X., Chen, S., Huang, X., Zhang, C., Xie, C., . . . Lin, S. (2024). AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Research. https://doi.org/10.1038/s41422-024-00985-6
โ€ข Cromsigt, J., Schleucher, J., Gustafsson, T., Kihlberg, J., & Wijmenga, S. (2002). Preparation of partially 2H/13C-labelled RNA for NMR studies. Stereo-specific deuteration of the H5โ€™โ€™ in nucleotides. Nucleic Acids Research, 30(7), 1639โ€“1645. https://doi.org/10.1093/nar/30.7.1639
โ€ข Rangadurai, A., Szymanski, E. S., Kimsey, I., Shi, H., & Al-Hashimi, H. M. (2020). Probing conformational transitions towards mutagenic Watsonโ€“Crick-like GยทT mismatches using off-resonance sugar carbon R1ฯ relaxation dispersion. Journal of Biomolecular NMR, 74(8โ€“9), 457โ€“471. https://doi.org/10.1007/s10858-020-00337-7
โ€ข Noeske, J., Richter, C., Grundl, M. A., Nasiri, H. R., Schwalbe, H., & Wรถhnert, J. (2005). An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proceedings of the National Academy of Sciences, 102(5), 1372โ€“1377. https://doi.org/10.1073/pnas.0406347102
โ€ข Ohira, T., Minowa, K., Sugiyama, K., Yamashita, S., Sakaguchi, Y., Miyauchi, K., Noguchi, R., Kaneko, A., Orita, I., Fukui, T., Tomita, K., & Suzuki, T. (2022). Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature, 605(7909), 372โ€“379. https://doi.org/10.1038/s41586-022-04677-2
โ€ข Vรถgele, J., Duchardt-Ferner, E., Bains, J. K., Knezic, B., Wacker, A., Sich, C., Weigand, J. E., ล poner, J., Schwalbe, H., Krepl, M., & Wรถhnert, J. (2024). Structure of an internal loop motif with three consecutive Uโ€ขU mismatches from stemโ€“loop 1 in the 3โ€ฒ-UTR of the SARS-CoV-2 genomic RNA. Nucleic Acids Research, 52(11), 6687โ€“6706. https://doi.org/10.1093/nar/gkae349
โ€ข Broft, P., Rosenkranz, R. R., Schleiff, E., Hengesbach, M., & Schwalbe, H. (2022). Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biology, 19(1), 266โ€“278. https://doi.org/10.1080/15476286.2021.2024034

USE CASES OF THE SILANTES PHOSOPHORAMIDITES IN SCIENTIFIC PUBLICATIONS:

โ€ข Becette, O., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
โ€ข ล tih, V., Amenitsch, H., Plavec, J., & Podbevลกek, P. (2023). Spatial arrangement of functional domains in OxyS stress response sRNA. RNA, 29(10), 1520โ€“1534. https://doi.org/10.1261/rna.079618.123

USE CASES OF THE SILANTES OLIGONUCLEOTIDE SYNTHESIS SERVICE IN SCIENTIFIC PUBLICATIONS:

โ€ข Belfetmi, A., Zargarian, L., Tisnรฉ, C., Sleiman, D., Morellet, N., Lescop, E., Maskri, O., Renรฉ, B., Mรฉly, Y., Fosse, P., & Mauffret, O. (2016). Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA, 22(4), 506โ€“517. https://doi.org/10.1261/rna.054445.115
โ€ข Borggrรคfe, J., Victor, J., Rosenbach, H., Viegas, A., Gertzen, C. G. W., Wuebben, C., โ€ฆ Etzkorn, M. (2021). Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature, 601(7891), 144โ€“149. https://doi.org/10.1038/s41586-021-04225-4
โ€ข Chernatynskaya, A. V., Deleeuw, L., Trent, J. O., Brown, T., & Lane, A. N. (2009). Structural analysis of the DNA target site and its interaction with Mbp1. Organic & Biomolecular Chemistry, 7(23), 4981. https://doi.org/10.1039/b912309a
โ€ข Van Melckebeke, H., Devany, M., Di Primo, C., Beaurain, F., Toulmรฉ, J., Bryce, D. L., & Boisbouvier, J. (2008). Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proceedings of the National Academy of Sciences, 105(27), 9210โ€“9215. https://doi.org/10.1073/pnas.0712121105

USE CASES OF THE SILANTES 14-MER RNA STANDARD IN SCIENTIFIC PUBLICATIONS:

โ€ข Duchardt, E., & Schwalbe, H. (2005). Residue Specific Ribose and Nucleobase Dynamics of the cUUCGg RNA Tetraloop Motif by MNMR 13C Relaxation. Journal of Biomolecular NMR, 32(4), 295โ€“308. https://doi.org/10.1007/s10858-005-0659-x
โ€ข Hartlmรผller, C., Gรผnther, J. C., Wolter, A. C., Wรถhnert, J., Sattler, M., & Madl, T. (2017). RNA structure refinement using NMR solvent accessibility data. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05821-z
โ€ข Nozinovic, S., Fรผrtig, B., Jonker, H. R. A., Richter, C., & Schwalbe, H. (2009). High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Research, 38(2), 683โ€“694. https://doi.org/10.1093/nar/gkp956
โ€ข Richter, C., Kovacs, H., Buck, J., Wacker, A., Fรผrtig, B., Bermel, W., & Schwalbe, H. (2010). 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Journal of Biomolecular NMR, 47(4), 259โ€“269. https://doi.org/10.1007/s10858-010-9429-5
โ€ข Ferner, J., Villa, A., Duchardt, E., Widjajakusuma, E., Wรถhnert, J., Stock, G., & Schwalbe, H. (2008). NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops. Nucleic Acids Research, 36(6), 1928โ€“1940. https://doi.org/10.1093/nar/gkm1183

RELEVANT BLOG ARTICLES:

โ€ข What Are Stable-Isotope Labeled Nucleic Acids?: https://silantes.com/stable-isotope-labeled-nucleic-acids/

โ€ข Synthesizing Stable Isotope-Labeled Nucleic Acids: https://silantes.com/synthesizing-stable-isotope-labeled-nucleic-acids/

โ€ข The Advantages of Using Stable Isotope-Labeled Nucleic Acids: https://silantes.com/advantages-stable-isotope-labeled-nucleic-acids/

โ€ข Applications of Stable Isotope-Labeled Molecules: Exploring the Power of Isotopic Tracers: https://silantes.com/applications-stable-isotope-labeled-molecules/

โ€ข Custom RNA & DNA Synthesis Services: Tailored Solutions for Your Nucleic Acid Needs: https://silantes.com/custom-dna-rna-synthesis/

RELEVANT WEBINARS:

โ€ข Easy 13C, 15N-Labeling of DNA through isothermal amplification: Applications to G-quadruplex, aptamer, and DNAzyme: https://www.youtube.com/watch?v=HDOHcVhjZro